
Journal of Web Engineering, Vol. 6, No.3 (2007) 244-260
© Rinton Press

INSTRUMENTING THE DYNAMIC WEB

ANDY EDMONDS

Live Search, Microsoft Corp, Redmond, WA
andyed@live.com

RYEN W. WHITE

Microsoft Research, Redmond, WA

ryenw@microsoft.com

DAN MORRIS

Microsoft Research, Redmond, WA

dan@microsoft.com

STEVEN M. DRUCKER

Microsoft Live Labs, Redmond, WA

sdrucker@microsoft.com

Received January 15, 2007
Revised June 6, 2007

One of the most critical driving forces in the evolution of interfaces on the Internet has been the logging
built into common Web servers and the decade-long deployment of analytics based upon this data source.
Page-view logging has slowly moved to callback systems using client-side scripting to capture more
aspects of the user experience. With the rise of JavaScript-based client-side interactivity and, more
recently, asynchronous Javascript and XML (AJAX), server-side logging is less able to capture the user
experience of Web sites and applications that are rising in complexity. We present a new technique for the
in-page logging of interaction events that will help interaction designers make more informed design
decisions based on how users are interacting with their systems. The potential benefit of our technique is
demonstrated in a case study with a working system.

Key words: Usability, analytics, event log analysis, AJAX, interaction design.

1 Introduction

The evolution of interfaces on the Internet has been driven by the insights garnered from logging built
into common Web servers [1] . Because the protocols used to transfer data on the Web do not provide
detailed user interaction information to servers, the focus of the research community has been on
studying page-level interactions [2,3]. However, the rise of JavaScript-based client-side interactivity
and, more recently, asynchronous Extensible Markup Language (XML) data exchanges have made
server-side logging less able to capture the user experience of Web sites and Web-based applications.
Modern Web page design is moving user experiences away from historically-typical page transitions

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 245

to richer interactions involving background data transfers and client-side content generation within a
single Web location. Such complex functionality within the page is used for low-latency input
validation, progressive disclosure, dynamic menus, and other multimedia experiences. The increase in
complexity of these interfaces and deviation from established interface paradigms makes logging even
more critical as a means of determining how this functionality is being employed by end-users. Usage
information is of concern to Web site developers and the corporations that rely on such data to inform
decisions about page design, marketing emphasis, and even business strategy. To address this
emergent dynamism page view logging has recently started to move to callback systems using client-
side scripting to capture more aspects of the user experience, such as within-page mouse and keyboard
interactions with interface features.

Despite its appeal, logging intra-page activity is an expensive process in a number of ways,
including:
• Development cost of instrumenting complex User Interfaces (UIs)
• Potential end-user impact of additional upstream data flow or custom software
• Analysis complexity

Therefore, the Web development community requires a cost-effective technique for logging intra-
page activity that minimizes development and deployment cost, minimizes impact on the user, and
maximizes impact on the design process. In this article we present MLogger, a within-page interaction
logging system that incorporates both the latest in browser technology for logging with a design that
capitalizes on modern development practices of structural markup and cascading stylesheets. We will
explore how detailed in-page logging can improve a user interface design through analysis and design
iteration of AJAX-style pages where elements may appear and disappear depending on user input.
The logging system is also robust to changes in screen resolution and browser size since tracking is
based on page element position rather than absolute pixel location.

In the remainder of this article the range of potential applications and related work will be
reviewed, followed by a description of a recent implementation of MLogger. We will then present a
case study of the toolkit and a review of other situations in which the toolkit could benefit Web design
processes.

2 Current Practices and Opportunities

Web development is a complex endeavour with strong business and societal impact. The built-in
Hypertext Transfer Protocol (HTTP) server logging of the mid 1990s is rapidly being augmented with
client-side callbacks that inform the process of Web development with user data such as browser type,
operating system, and screen size, as well as other critical information such as return user tracking (i.e.,
the frequency with which a user returns to a given site or domain). Many new analytics providers are
now trapping the elements that garner clicks and presenting the data in a visualization that starts with
the Web page and overlays user activity [4]. For example, Chi et al. [5] developed a system that
allows users’ click behavior as they navigate through the multiple pages of a Web site to be visually
analyzed. Improvements to the design of the site can be suggested if appropriate. While this provides
an easily-interpretable view of user navigation, it does not address the challenges of Web interaction
models which do not revolve around page transitions.

246 Instrumenting the Dynamic Web

Other systems have allowed developers to study more fine-grained interaction with individual
pages within the site. One example of this is the use of “heatmaps” to superimpose cursor attention [6]
or eye gaze [7] onto an image of the Web page. Another example is the visualization of eye saccades,
gaze fixation, mouse movements, and clicks as a node-link graph allowing chronometric relationships
between eye and mouse movements to be identified [8]. Gellner and Forbrig [9] explored the use of
custom-installed software to record mouse movements to provide insight into “unconscious aspects of
users’ behavior” that the authors claim are similar in some respects to body language. However, it is
difficult to get from interactions superimposed over a Web page to a detailed analysis of how users are
interacting. Additionally, since they are largely based on absolute pixel position, these visualizations
are invalidated if the content of the page changes. When users manipulate dynamic content, filter and
sort data, or interact in other novel ways within a single page, a new form of logging is needed.

User-Centered Design (UCD) places the user at the center of the design of interactive systems
[11]. Performing UCD effectively generally involves up-front user research, iterative testing of
prototypes, and – in the age of networked systems – instrumentation and logging to monitor ongoing
interface performance. Much of UCD is based on what users say they want rather than what they
actually do when confronted with a system. Analyses of log data can complement more traditional
UCD methods and provide naturalistic data at scale. From the UCD perspective, top goals for insights
from logs span the key dimensions of usability [11]:

• Ease of use
• Error rate
• Usefulness
• Learnability
• Memorability

Robust logs of user activity can provide insights into these user experience dimensions.
Techniques such as sequence detection (i.e., looking for repeated and semantically-meaningful
recurring patterns within a user’s activity), characterization (i.e., partitioning interaction sessions by
the tasks a user attempted), and comparison (i.e., generating deviations from an optimal user path for a
given intent), along with multiple levels of coding of events to map to different granularities (i.e.,
noting that a user clicked inside a search box but also inside the box’s descriptive header) are critical
methods for extracting meaning from event logs [12].

Task success is a key ease-of-use metric and is typically identified by iteration between a trigger
and an end event for a single session. With the more dynamic UIs of the current Web, both start and
end events may be within the same single Web page. However, despite the fact that sequences of
interactions have been used previously in log analysis to better understand user behavior [13], they
have typically focused on a series of page views, rather than more fine-grained interactions within the
pages themselves. Given the recent developments in dynamic UIs, the sequence mining necessary to
study task completion may now be needed within a page as opposed to across page loads. For users
who start but do not complete the task, sequence characterization can identify key problem points and
distinguish between spontaneous abandonment (i.e., where users voluntarily terminate interaction
activity prior to a recognized stopping point), and error-triggered abandonment (i.e., where users
involuntarily terminate interaction activity due to system error). In addition, should an interface have

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 247

an affordance for reversing the effect of interactions, the use of this functionality by users following a
series of interaction events could help the designer better understand when users are unsatisfied or
likely to make mistakes in data entry. To address a variety of aspects of system usability, a system
designer can create one or more “optimal paths” [19] that can form the basis for comparison to actual
user paths. This can facilitate task identification, ease of use analysis based upon quantitative metrics
like number of steps, and the detection of error sequences.

The frequency of usage of an interface feature is a core indicator of usefulness that is also easy to
determine given specific UI elements dedicated to triggering features. For example, optional interface
features that a designer wishes to study can be hidden by default but made accessible via UI elements
on the default display. The frequency with which users request a particular hidden feature is an
indicator of its value. In most cases, logging clicks and the elements behind them is sufficient to
determine which application features on a page are being used. However, as application state becomes
more complex, awareness of a series of events may be required to discern the effect of contextually
sensitive UI elements. Discriminating between a lack of usefulness and a lack of discovery is a key
challenge in mining feature usage.

The use of page content as a feature that should be evaluated for utility is one of the most
challenging goals for event log data. A key innovation in the logging framework described in this
article is a scheme for logging mouse hover events. Chen [14] suggests that mouse location has
moderate predictivity of eye gaze. If user hover time is predictive of user attention, it may be useful to
monitor content engagement. In addition, the findings of a number of studies have suggested that page
interactivity is predictive of overall satisfaction. Claypool et al. [15] showed that time spent on a page
and scrolling within a page were predictive of users’ self-reported interest in pages across the Web.
Fox et al. [16] and Joachims et al. [17] found similar predictivity in clicks on Web search result pages.

Detecting learnability and relearning of pages and the interface features resident on them requires
integrating usage tracking over multiple usage events and brings with it challenges of user recognition
over time. For learnability, the lag between page load and user action may be predictive and is enabled
by the logging framework proposed here. Mueller and Lockerd [18] report observing highly
characteristic mouse movements in cases of high user familiarity. The logging framework described
here has not been deployed in a situation of strong re-use, so relearning and memorability will not be
addressed directly in this article. However, MLogger does assign a unique identifier to each Web
browser that visits the site to help disambiguate new users from return visitors, a key pre-requisite to
studying learnability and memorability. Early developments in Web tracking outperformed existing
log-based solutions with client-side tracking to more robustly identify individual clients by logging
cookie values and to ensure that pages loaded from a browser’s cache are captured. In traditional Web
applications, an HTTP server typically logs a request for a site’s start page with a timestamp and logs a
corresponding entry for the end page, if the user got there. In addition to a timestamp, the IP address
and browser agent are logged in many default Web server configurations, but these data do not
accurately identify individual users or log cached page views.

The MLogger system described here is intended for site developers conducting deep analytic
studies of their user interfaces. While our system could be deployed in a usability lab environment, the
ability to collect data at scale offers significant advantages in reliability over previous logging systems.

248 Instrumenting the Dynamic Web

Other approaches to logging enable large-scale Internet research through proxy systems [10] or
browser instrumentation [19, 16]. These approaches involve greater user impact, for example software
installs or custom browsing portals, than onsite instrumentation but can yield insights beyond the
limited purvey of a site owner. Proxies and instrumented browsers are especially useful for
understanding behavior across sites, for investigating sites a test team does not control, or for
understanding Web usage longitudinally.

These tradeoffs require researchers to consider the goals of their work in order to choose an
appropriate method. The rich logging of page details described here is typically only meaningful to the
designer as the log captures attributes specific to a page’s UI and its implementation. This makes the
approach especially useful for site owners, but in fact the technique could also be applied in a proxy or
browser shell [19]. The goal in this work is to explore how detailed in-page logging can improve a UI
design through analysis and design iteration. In the next section, the logging details are described,
followed by a case study of their application.

3 Logging System Design

We developed MLoggera, a logging system that focuses on capturing events within an instrumented
Web page with enough detail to programmatically recreate a user’s experience and to describe the
user’s interactions in the language of the site designer. A key challenge in production-ready event
logging is browser compatibility. While Microsoft’s Internet Explorer (MSIE)b still has the majority
of the market share, some of the most active Web users are using Mozilla’s Firefoxc or other
alternative browsers. To address the complexities in cross-browser development, and to ease the tasks
of Web application construction, a multitude of robust client-side libraries are available for dynamic
Web application development. These libraries simplify the cross-browser differences and facilitate
asynchronous data exchange, hiding and showing content, animation, and general presentation
functions. MLogger uses MochiKitd to support MSIE and Firefox. The event monitoring libraries
that MochiKit provides are compatible with standards proposed by Microsoft and the World Wide
Web Consortium (W3C). In addition, the library not only provides a single way to invoke event
listeners but also normalizes the returned metadata.

3.1 Event Listeners

Trapping user events with JavaScript is accomplished by attaching functions, called “listeners,” to
combinations of the Document Object Model (DOM) and user actions. The following user actions, or
“events,” have a logging function attached to them at the document level.

MLogger exploits the Web page’s DOM and common best practices for constructing dynamic
application pages.

These practices state that presentation aspects be attached to HTML with cascading style sheets

a The MLogger name is derived from “MochiKit Logger”.
b http://www.microsoft.com/ie
c http://www.firefox.com
d http://mochikit.com

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 249

(CSS) effectively identifying repeated classes of UI elements with a common identifier. Further, key
nodes in the page are tagged with unique identifier (ID) attributes to facilitate addressing those nodes
with scripting code. Through these methods a highly descriptive and detailed event log can be
constructed containing instances of the events described in Table 1.

Table 1. User actions or events captured in MLogger.

Event Log frequency

Mouse click All

Mouse movement If underlying element is different than last move

Key press All

Scroll All (time since last scroll event + duration)

Page leaves focus (blur) All

Page gets focus All

Window resize All

In the next section we describe a case study in which we deployed MLogger on a Web site
targeted at Web analytics community, recruited subjects from this community, and logged and
analyzed their interactions.

4 A Case Study Using MLogger

We developed a Web-based application to help Web analysts construct predictive models of consumer
behavior on e-commerce Web sites. We used MLogger to record user interactions with this
application as defined earlier in Table 1. To test the performance of the system we recruited subjects
from two usability-focused Weblogs and an analytics mailing list. Subjects were encouraged to visit
the page on which the application was hosted and use the facilities it offered in whatever way they saw
fit. It is important to note that we did not give users an explicit task to perform with this system. The
aim of this exercise was to gather a fairly large amount of usage data with the application, and test the
robustness of MLogger at storing and analyzing the interaction data that resulted. Nonetheless it was
assumed that the user population targeted in the recruitment email would be interested in using this
application for its intended purpose of determining Web site conversion rates, so the data we would get
would be fairly representative of the type of logs that would be generated by this demographic.

250 Instrumenting the Dynamic Web

Figure 1. Funnel Application

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 251

 Over the course of two days, 67 users visited the page and their usage was captured by MLogger.
We did not record any personal information about users, nor did we request that they complete any
questionnaires about their experience prior to departure from the Web site. The only information we
recorded was users’ interactions with the application.

4.1 Sample Application

The single-page application was constructed using client-side JavaScript for rich interactivity
specifically to test the logging framework. Figure 1 shows the page containing the application,
featuring a spreadsheet-like calculator at the top with a parallel graphic rendering of the data. The
page models an e-commerce flow from “home page” to “add to cart” and through the checkout
process. Users of the Web site can explore the impact of varying completion rates at each stage.
Additionally, support for custom steps is present but expected by the page designer to be less
frequently used. We refer to this as the “funnel” application, since its aim is to estimate eventual
conversion rates from an initial user pool and generate a summary report that site designers can use in
developing their e-commerce application.

The spreadsheet grid, pictured below, allows editing of either percent or counts as well as the
addition of new rows. Clicking a step name turns the cell into an editable text field, allowing it to be
renamed. The “manage steps” column supports creating additional rows or deleting existing rows.

.

Figure 2. Spreadsheet grid in funnel application

This example offers the Web designer a chance to explore task success. We will assume that
complete user success is defined, by the site designer, as manipulating the spreadsheet to customize
one or more models, saving the models, and then generating a final report. The spreadsheet features
provide an interaction design challenge for representing non-standard UI elements on the Web, e.g.,
adding rows to a table and editing text. The supporting text offers an opportunity to explore
measurement of user interaction with page content rather than only interface elements such as text
boxes and buttons.

252 Instrumenting the Dynamic Web

4.2 Identifying Unique and Repeated Elements

Well-designed structural HTML uses ID attributes to identify key unique elements on the page and
CSS classes to identify repeating elements. For understanding user behavior, this distinction is very
useful. Storing CSS class names allow aggregation of data across repeated UI elements. This is
particularly useful for assessing interaction design issues. Unique element identification is more useful
for task model and state transition analyses along with specific data mining.

The spreadsheet grid shown in Figure 2 has several sets of repeating elements: the editable “Step
Name” cells, the “Conversion %” fields, the “Raw Number” input fields, and the “Manage Steps”
buttons. Individual rows are labelled with ID attributes indicating their offset, and this offset is
managed dynamically as new rows are added.

Events in the browser target the most nested element in the DOM. Meaningful description of a UI
element may occur in the ID or class attributes higher in the DOM. To address this, the logging
system walks up the DOM from the event element to the root node (the document body) [19]. In
addition to node attributes, the node tag name and offset of the tag within the parent block is recorded
to enable precise and programmatic identification. For example, an event occurring in a typical site
search box might occur within a form of id “searchForm” enclosed in the DIV identified by the
attribute “header” which is a child node of the BODY tag.

The DOM path column lists the ID, class, and node name and offset for each step up the DOM
tree to the body. Table 2 demonstrates the level of detail available with each logged event in the
funnel application; the element ID’s and classes have specific meaning to the page’s designer that
identify an element’s role in the UI.

Table 2. Sample mouse move event as represented in MLogger

Sample Mouse Move Event

DOM Path

Element ID Element Class Element Offset
 dataNumber TD(2);
dataRow2 dataRow TR(2);
conversionTableBody TBODY(0);
conversionTable conversionTable TABLE(0);
 FORM(0);
conversionForm DIV(0);

Timestamp 1529 milliseconds from page render
Type mousemove
X 748 pixels
Y 381 pixels

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 253

This demonstrates how the logging in MLogger can be tailored to the interface being analyzed,
allowing more accurate descriptions of interaction events to be captured. The DOM element logging
enables programmatic recreation of the user event sequence. This offers significant advantages over
video logs that might be collected in a usability lab, where this data would have to be coded at
enormous time and expense and potential inaccuracy. While exact mouse position is not recorded
continuously (in the interests of keeping the load on the system to a minimum and the size of the log
file down), mouse position is logged with each mouse action that results in a new underlying DOM
element being hovered. This also enables a visualization that is independent of screen resolution,
which may differ across users, making Mlogger potentially more portable than existing logging
technologies.

The design of the logging details has a strong effect on the size of the data, burdening the client
and the analyzer. It is easy to toggle the level of detail, and even the DOM path approach can be
customized to a particular needed level of detail. Logging mouse hover locations only when the
underlying page structure changes is a verbose but strategically limited level of logging. Logging
every mouse movement event, for instance, can generate ten or more events per second.

While the DOM offset is the most precise way to enable event playback, and is often critical with
dynamic applications, it is sensitive to small changes in the HTML mark-up. The ID-based approach
is more resilient to redesigns and is the likely source of comparative analyses through redesigns. The
offset-based approach is also useful for identifying elements in log data even if they lack an ID
attribute. Both class names and ID’s provide useful data for sequence mining user event logs.

Several additional data points are logged, depending upon the type of an event. Table 3 details
these additional attributes.

Table 3. Data points logged

Event Type Additional Information

Mouse Move DOM Path

Resize Screen width, screen height

Link Click HREF attribute of link

Scroll Y-offset

Key-presses Key character code and lookup table identifier

Blur / Focus Toggle flag indicating current focus

Different events carry different metadata and change different aspects of the UI state. For
example, clicking a link typically does not change the y-offset, so logging this attribute is not efficient.
Right-clicks and drag-drop events were not of interest for the current page studied but could be added.
In the next section we describe the analysis of the funnel application.

254 Instrumenting the Dynamic Web

5 Analyzing the Funnel Application

5.1 Task Success

For many Web designers, our toolkit allows a detailed investigation of task success: the progress of a
user through a series of specific interactions that the designer wants users to complete. For example,
while our example page was built to construct models of conversion flow and generate a summary
report. The user’s initiation of this process is identified by a click in the any of the data grid form
elements; we can detect this event in our logs by selecting clicks in any DOM path that contain the
class “dataNumber” or “dataPercent”. The end of this process is identified by a click on the “generate
report” link; we can detect this event in our logs by selecting clicks that contain the ID
“generateReportLink”. This analysis is typical of how we expect Web designers to use our toolkit;
generating a “did not attempt” rate and an “attempted but did not complete” rate (similar to the notion
of abandonment described earlier) is essential to evaluating the success of nearly all commercial Web
applications.

5.2 Errors

Two core error conditions exist in almost any commercial Web application: the “did not attempt” and
“attempted but did not complete” conditions. Identification of errors and stop conditions is typically a
data-mining challenge. One exception is a pervasive task failure condition for almost all Web pages:
the “homepage bounce”. In this scenario, the user chooses not to engage with the page immediately
following a basic inspection. In our example, given that our funnel application is a single page, the
equivalent failure condition is a page view without scrolling or form interaction. Analysis of user
action showed that 44% of users engaged with the page. The bounce rate for this application (i.e., the
percentage of visitors who leave the page without explicitly interacting with the applicaton) , computed
by looking at the event traces where an exit event was logged without any scrolling or less than 3
hover locations. Given the opt-in nature of participation, this reflects both the UI and the method of
soliciting users. Importantly, traditional Web logging systems would not allow a designer or site
administrator to compute these figures, since the condition for engagement does not require additional
page requests. In Table 4 we show the percentage of users who engaged with the application for
different types of engagement and different tasks.

Table 4. User engagement and associated tasks for our example application

User Engagement Percent of Users Task

Scroll or Click in Spreadsheet UI 43.75% All

Any Spreadsheet Click 29.68% Spreadsheet

Model Editing 18.75% Spreadsheet

Scroll 17.18% Learn

Generate Report 3% Spreadsheet

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 255

One can look at this page as supporting two distinct tasks: learning about e-commerce conversion
from the text (“Learn” in Table 4), and links and exploring specific conversion models (“Spreadsheet”
in Table 4). The percent of users that scroll (17%) is indicative of the percentage of users that are
interested in learning about e-commerce conversion. The percentage of users that edit spreadsheet
cells (18%) is indicative of the percentage of users that are interested in exploring specific conversion
models. These metrics of user interest are again based on client-side activity and could not be
computed using traditional logs gathered during HTTP request events.

Analysis of low-level user errors is another area of significant interest to all Web designers that
cannot be addressed using traditional page-based logging. Dragging and dropping page objects to an
invalid location, submitting an invalid password, and a multitude of other everyday slips affect
computer usage. Many such errors can be expected in advance and are either allowed to occur due to
resource limitations or are handled explicitly by page logic, but error conditions that are not anticipated
by the page designer are virtually impossible to detect using traditional request logs. MLogger allows
post-hoc analysis of interaction data to identify and handle such errors by identifying an event
signature and mining the data stream around such occurrences.

In addition to this, MLogger also allows for the visualization of user interaction with elements of
the interface. For example, Figure 3 shows a heatmap depicting the percentage of users who hovered
over the elements in the spreadsheet form in our sample application.

In the visualization presented in Figure 3, color represents the percentage of users hovering over
the various elements in the grid. A Web designer reviewing this data might, for example, look for
non-interactive areas over which users hover, potentially indicating user confusion. In this example,
the 30% hover rate in the upper-left-most cell is interesting as the content of that cell is “Model Name:
click to edit”. A Web designer might therefore further examine this scenario by querying the data log
for mouse clicks in this cell, potentially indicating a misinterpretation by the user of the instructions.
In this case, no user clicked on the instructional text, likely indicating that users hovered here to

Figure 3. Heatmap of percent of users hovering on the spreadsheet form in our sample application.

This visualization could not be generated using traditional logging approaches

256 Instrumenting the Dynamic Web

consider the instructional text or that this element
was simply close to the center of the page,
leading to frequent mouse dwells.

Also noteworthy is the resolution-
independent nature of this visualization, made
possible by our DOM-based logging scheme.
Since our heat map is based upon the underlying
page representation, differences in mouse
position are normalized across screen sizes. The
density of hover is computed at each level of the
DOM: at the table, row, cell, and cell content
levels.

In this section we have presented some
analysis of the findings of our case study to
demonstrate what can be done with the MLogger
application. The granularity of the analysis and
the low overhead on systems is obviously
appealing to the designers of commercial Web
sites, accessed by many users on a daily basis. In
the next section we present an example of how
this logging could benefit a highly interactive
commercial application.

6 A Consumer Application of Mouse Hover
Events

Windows Live Image Searche is one of a growing
set of next-generation user interfaces in which
page transitions have been minimized. We
discuss this page here as an example of a system
that is difficult to study with traditional logging
methods, but can be examined in detail using
MLogger.

In Live Image Search, hovering over an
image triggers an image zoom, reducing the
utility of “more detail” pages. Background data
transfers eliminate “next page” operations (the
interface implements a concept of “infinite
scrolling”, so there is no need for the “next”
button commonly available in Web search
interfaces). Dynamic filters allow direct control
over the size of the images shown, and therefore

e http://images.live.com

Figure 4. A Potential Error Condition by Over-
shooting a Popup Affordance

Step 1: Prior to hover

Step 2: Image hover

Step 3: Accidental popup triggered by mouse

overshoot

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 257

the number of images on the page. The interface also offers a “scratchpad” into which users can drag
and drop images for later examination (not shown in Figure 4).

Hovering over any image brings up more details about that image, including the dimensions, the
file size, the location, and additional options. Pictured to the right is a successful user interaction with
a hover detail view, revealing additional affordances. Step 1 pictured the default view, step 2 the
hover, and step 3 the successful selection of a hyperlink at the bottom of the popup.

A heuristic review of the hover affordance resulted in the concern that the user might overshoot
the bottom of the hover popup and trigger the popup on the image below it. If events were to be
logged at the page level then we could not capture such erroneous interactions. However,
instrumenting mouse hover events with summaries of the underlying DOM would reveal whether this
hypothesized issue actually affects end users.

Since search engine engagement can be an indicator of user interest [20] the lack of normal paging
events necessitated sub-page level instrumentation for this application. As a result, user interaction
data is being studied to drive future UI iterations of this application.

7 Challenges in Instrumenting Web Applications

7.1. System State

A key contributor to the commercial success of Web-based analytics has been the stateless nature of
the Web. As more complex applications are built for the Web, the URL to which a user has navigated
will no longer be a useful indicator of system state. Identifying states for task analysis, user
experience playback, and error conditions will thus become more difficult. While the framework
discussed here does allow events to be played back to recreate page state, this makes cross-user
visualizations more difficult and adds a layer of complexity to sequential analysis for pattern
identification. Analysis routines have to maintain an ongoing record of the state of the UI in order to
effectively group events to a task model.

7.2. Data Transport

The system described here creates a slight delay in the time at the point the user selects a new page to
load, closes the window, etc. in order to send data to the server. The specific event handler is known
as “onbeforeunload” and triggers when a URL change occurs. While this is a common event logging
technique in commercial systems, the data size here is larger than typical, occasionally exceeding
twenty kilobytes in an uncompressed format with a greater user experience impact. Other systems use
proxy servers [21] or instrumented browsers [15] to reduce the impact of data travelling up to the
server, or use local file resources

If an application is dynamic (fetches data in the background without page refresh), data logging
should be bundled with these requests for data. In the case study here, the exit event is used as a
trigger to send data to the server. Additionally, a pause of greater than 20 seconds also triggers a send
to ensure capture of more abrupt browser process termination. Data is stored on the client in a
Javascript object and serialized to XML for sending to the server via form post. Form-get, a less

258 Instrumenting the Dynamic Web

cumbersome transport mechanism using purely the location string, is preferable but would require a
more concise serialization strategy than the one used here due to limits in the size of URLs.

7.3 Data Analysis and Interpretation

Analyzing event streams is difficult, particularly when event streams are collected at Web scale. Tools
and techniques for identifying sequences, sub-characterizing within those sets, and looking for
correlations between activity patterns are needed. A particular challenge in measuring task success is
identifying when a user begins working on a particular task. This is especially difficult following the
transition from a previous task. The boundaries between tasks can be fuzzy and multitasking is a
common operation [22, 23]. More work is necessary in determining when new tasks begin. Research
on task switching is ongoing in the human-computer interaction and artificial intelligence communities
[24, 25]. User interaction logging of the type proposed in this paper can play a part in better
understanding how users use Web applications and transition among tasks.

8 Future Directions

8.1 Methods for Content Assessment

There is reason to hypothesize that within -page activity could inform Web designers about the quality
of the content on a page. Certainly, page interactivity is predictive of overall satisfaction. Claypool et
al. [15], showed that time spent on page and scrolling were predictive of users’ self-reported interest in
pages across the Web.

There is, however, little existing work on measuring engagement with the page directly. Claypool
found that a simple click count did not predict interest, but this study was conducted more than five
years ago when interactive applications were less common. The utility of eye tracking for
understanding Web usability [8] is well demonstrated, but there is little scientific work on assessing
content purely through event logging.

Our system includes several data streams that provide information about page content. One
hypothesis, supported somewhat by Mueller, and Lockerd [18] and Chen and Anderson [14], is that a
user’s mouse tends to follow his gaze, and an estimate of a user’s gaze position can be used to estimate
interest in various page components. As suggested earlier, Mueller and Lockerd found 30% of users
kept their mouse in synch with their eyes while Chen and Anderson reported more complex
relationships between eye and mouse locations.

A lack of scrolling has been reported above, but there is an interesting pattern of scrolling and
then revisiting already viewed portions of the page. Backtracking is a well-known phenomenon in
reading and can be correlated with a user’s working memory load and with error states requiring
revisitation of key content. More global revisits, where large portions of the page are reviewed, are
likely a more positive sign, given the tendency of Web readers to scan and selectively consume content

8.2 Measuring User Satisfaction

While the scenarios here have shown strong use cases for event log data, a more general notion of
satisfaction is useful in the process of producing and evolving interface design. Particularly for

A. Edmonds, R. W. White, D. Morris and S. M. Drucker

 259

applications or complex Web sites, satisfaction is a complex outcome variable that encompasses all
of Nielsen’s dimensions of usability [11]. Creating a mapping from logged data to satisfaction is
often challenging. Combining event logging and explicit user feedback enables an application-
dependent effort to predict satisfaction from event logs. In Fox et al. [16], a lightweight, explicit
feedback collection effort combined with event logging produced a reusable model that will predict
the overall satisfaction outcome variable from purely event logs – at least until the application
changes enough to reduce the validity of the model. This can be used to address a key challenge in
the use of event logs: interpretation. While breaking down the potential tasks a user might engage in
on a Web application facilitates segmenting user behavior into comparable sets, a machine learning
approach ignoring task variations can capture powerful regularities in behavior logs predicting user
satisfaction across user intents.

9 Conclusions and Future Work

Now that Web applications are reaching the complexity of traditional desktop software, it is possible
that the success of analytics on the Web will catalyze the deployment of rich instrumentation to the
desktop. In any event, the extreme competition and low switch costs for a given service on the Web,
will create an increasing opportunity for interface innovation, and are likely to make the form of
detailed logging described here a topic of great utility. On the research side, the pervasiveness of
Web UIs are increasing the appeal of studying browser based applications.

We described MLogger, a logging application that both facilitates user activity playback in
dynamic UIs and analyses meaningful to designers by capturing a rich representation of the events in
the UI at multiple levels of granularity. Modern Web development best practices use a practical
separation between content and presentation style, creating a hierarchy of repeated design elements
upon which log data may be aggregated. Measuring task success in rich internet applications (RIAs)
was demonstrated, as was quantifying error conditions and assessing feature usage versus feature
discovery. As applications are becoming increasingly common on the Web, measuring content
engagement and overall user satisfaction may be facilitated by this type of low-level logging.

References

1. Kohavi, R. (2001). Mining e-commerce data: the good, the bad, and the ugly. In Proceedings of the 7th

ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, 8-13.
2. Catledge, L.D., and Pitkow, J.E. (1995). Characterizing browsing strategies in the World Wide Web.

Computer Networks and ISDN Systems, 27(6): 1065-1073.
3. Huberman, B., Pirolli, P., Pitkow, J., and Lukose, R. (1998). Strong regularities in World Wide Web surfing.

Science, 280(5360): 95–97.
4. Peterson, E. (2006). Web Analytics Demystified: A Marketer's Guide to Understanding How Your Web

Site Affects Your Business. Celilo Group Media: Portland.
5. Chi, E.H., Pirolli, P., and Pitkow, J. (2000). The scent of a site: a system for analyzing and predicting

information scent, usage, and usability of a Web site. In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, 161-168.

6. Weinreich, H., Obendorf, H., Herder, E., and Mayer, M. (2006). Off the beaten tracks: Exploring three
aspects of Web navigation. In Proceedings of the World Wide Web Conference, 133-142.

7. Cutrell, E. and Guan, Z. (2007). What are you looking for? An eye-tracking study of information usage in
Web search. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (in
press).

260 Instrumenting the Dynamic Web

8. Reeder, R.W., Pirolli, P., and Card, S.K. (2001). WebEyeMapper and WebLogger: Tools for
analyzing eye tracking data collected in Web-use studies. In Extended Abstracts of the ACM
SIGCHI Conference on Human Factors in Computing Systems, 19-20.

9. Gellner, M. and Forbrig, F. (2003). ObSys: A tool for visualizing usability evaluation patterns
with mousemaps. In Proceedings of HCI International, 469-473.

10. Atterer, R., Wnuk, M., and Schmidt, A. (2006). Knowing the user's every move: User activity
tracking for Website usability evaluation and implicit interaction. In Proceedings of the World
Wide Web Conference, 203-212.

11. Nielsen, J. (1990). Hypertext and Hypermedia. Academic Press.
12. Hilbert, D. and Redmiles, D. (2001). Large-scale collection of usage data to inform design. In Proceedings

of 8th IFIP TC 13 Conference on Human-Computer Interaction, 569-576.
13. Pitkow, J. and Pirolli, P. (1999). Mining longest repeating subsequences to predict World Wide Web surfing.

In Proceedings of the USENIX Symposium, 139-150.
14. Chen, M.C., Anderson, J.R., Sohn, M.H. (2001). What can a mouse cursor tell us more? Correlation of

eye/mouse movements on Web browsing. In Extended Abstracts of the ACM SIGCHI Conference on Human
Factors in Computing Systems, 281-282.

15. Claypool, M., Le, P., Waseda, M., and Brown, D. (2001). Implicit interest indicators. In Proceedings of the
Conference on Intelligent User Interfaces, 33-40.

16. Fox, S., Karnawat, K., Mydland, M., Dumais, S.T., and White, T. (2005). Evaluating implicit
measures to improve the search experience. ACM Transactions on Information Systems, 23(2):
147-168.

17. Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2005). Accurately interpreting clickthrough
data as implicit feedback. In Proceedings of the 28th Annual ACM SIGIR Conference on Research and
Development in Information Retrieval, 154-161.

18. Lockerd, A. and Mueller, F. (2001). Cheese: Tracking mouse movements on websites. In Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems, 279-280.

19. Edmonds, A. (2003). Uzilla: A new tool for Web usability testing. Behavior Research Methods,
Instrumentation and Computers, 32(2): 194-201.

20. Agichtein, E., Brill, E., Dumais, S.T., and Ragno, R. (2006). Learning user interaction models
for predicting Web search preferences. In Proceedings of the 29th Annual ACM SIGIR
Conference on Research and Development in Information Retrieval, 3-10.

21. Hong, J. and Landay, J. (2001). WebQuilt: A proxy-based approach to remote Web usability
testing. ACM Transactions on Information Systems, 19(3): 263-285.

22. Miyata, Y. and Norman, D.A. (1986). Psychological issues in support of multiple activities. In Norman, D.
A. and Draper, S.W. (Eds.) User Centered Design, Lawrence Erlbaum, 265-284.

23. Rubenstein, J.S., Meyer, D.E, and Evans, J.E. (2001). Executive control of cognitive processes in task
switching. Journal of Experimental Psychology, 27(4): 763-797.

24. Czerwinski, M., Horvitz, E., and Wilhite, S. (2004). A diary study of task switching and interruptions. In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 175-182.

25. Horvitz, E., Kadie, C.M., Paek, T., and Hovel, D. (2003). Models of attention in computing and
communication: From principles to applications. Communications of the ACM, 46(3): 52-59.

