
 
What the Hell is the Inertia Tensor? 

An introduction for non-physicists, by Dan Morris 
 
Until recently, the depth of my understanding of the inertia tensor was that “it tells you how the 
mass of an object is distributed.”  I could say that if someone asked me, but I didn’t really know 
what it meant.  For example, I had no idea what it would mean if you made one element zero, or 
increased the magnitude of a particular element, etc.  I’m writing this tutorial so I don’t forget 
what I now understand about the inertia tensor… it’s not going to be hugely quantitative, but it 
gets some important points across. 
 
First let’s pose a simple physics question: if I have an object with mass m, what force do I need 
to apply to get an acceleration a?  The answer, of course, comes from Newton’s basic equation 
of motion : 

 

F ma=  (1.1) 
 

 
For a given object with mass m, if I apply a force F, I’ll get an acceleration a.  If I apply a force 
2*F, I get an acceleration 2*a.  If my object gets heavier, I need to apply more force to get the 
same acceleration.  Sweet. 
 
Now I want to ask the same question for rotation.  First let’s assume we have a world with 
known axes x, y, and z.  And let’s define the rotational velocity ω for an object as a three 
element-vector (ωx,ωy,ωz) that contains the rate at which the object is spinning around each axis.  
If all three are zero, the object isn’t spinning at all.  If ωx is the only non-zero element, the object 
is spinning nicely around the x-axis, etc. 
 
So now I want to know what torque I need to apply to accelerate the object’s rotation by some 
amount dω.  For example, maybe the object is spinning around the x axis with rotational velocity 
(ωx,0,0), and I want to stop it in t seconds.  So I want to know what torque I need to apply to get 
a rotational acceleration of (-ωx / t). 
 
This is where the inertia tensor comes in.  Just like I have F = ma for linear acceleration and 
force, I have the following equation for rotation : 

 
*I dτ ω=  (1.2) 

 
…where τ is torque (a 3-element vector, indicating the torque around the x, y, and z axes), dω is 
the rotational acceleration that we discussed before (a 3-element vector), and I – of course – is 
the magic inertia tensor (a 3-by-3 matrix).  Note how it looks just like equation (1.1)! 
 
I’m going to write this equation in matrix form, and we’ll play with it a little bit before we see 
where the inertia tensor comes from. 



 
In matrix form, the above equation looks like : 
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(1.3) 

 
Now I’m going to do my best to throw out an intuitive explanation of what some of the 
individual elements of the inertia tensor mean in the real world.  The easy ones are the diagonal 
elements: Ixx, Iyy, and Izz.  In fact, let’s take the simple case, where all the other elements in I are 
zero.  This happens to be true for any object that’s symmetric around all three axes, like a big 
sphere, or a big cube that’s sitting nicely on the axes.  We’ll deal with the other elements later. 
 
In this case, for example, I can multiply the first row of equation (1.3) out, to get : 

 

*x xx xI dτ ω=  (1.4) 
 

This looks a lot like F = ma.  Basically in this case, I can think of Ixx as the rotational inertia 
around the x axis.  So for rotation around the x axis, Ixx behaves just like the m in F=ma.  The 
bigger my Ixx is, the more torque I have to apply around the x axis to get it to spin.  Or, 
conversely, for a given torque, a bigger Ixx means I’ll get less rotation around the x axis.  Just like 
m.  In case I didn’t mention it, it’s a lot like m. 
 
So for example, what would it mean for Ixx to be zero?  It would mean that for a given torque, I 
would get an infinite rotational acceleration around the x axis.  That’s an important lesson.  For 
real objects, none of the diagonal elements in I can be zero, since we know there’s no real object 
where a tiny touch will set it spinning at an infinite rate. 
 
Okay, now the hard part… what’s the deal with the off-diagonal elements, for example Ixy.  This 
question is really hard to explain quantitatively without dealing with the inverse of the inertia 
tensor, so I’m going to blow off the hard parts and deal with it qualitatively.  What this element 
(Ixy) tells me is how much my object will be accelerated around the y axis when I apply torque 
around the x axis. 
 
What?  How’s that possible?  How could spinning an object around one axis make it rotate 
around another axis too? 
 
For symmetric objects, it can’t.  If I take a big uniform cube in space and I torque it around the x 
axis, intuition (correctly) suggests that it only spins around the x axis. 
 
But now let’s say I attach a big-ass weight somewhere on the sphere.  For example, let’s say I’m 
spinning the Earth around the axis that runs from the north pole to the south pole (and we’re 



pretending of course that the Earth is a uniform sphere), and I attach a big weight to Canada.  
Now suddenly I’ve accelerated that big weight, and it wants to “pull” that part of the world along 
with it.  This is going to make the Earth want to “tilt”, so the north pole moves along with big 
heavy Canada.  This is a rotational acceleration along an axis other than the one I torqued! 
 
Okay, so we’re blown away by that, and that’s about as far as I’m going to go with the off-
diagonal elements.  You can see that they’re always zero for a perfectly symmetric object, so the 
object spins only around the axes you torque it around. 
 
Another footnote, while we’re on the topic… for those of you familiar with rotational bases, it’s 
interesting to note that for any object, there’s some basis along which the inertia tensor is 
diagonal (all the off-diagonal elements are zero).  That means that there’s some set of 
perpendicular axes (x,y,z) around which I can torque the object and get rotational acceleration 
only along the axis I torqued… another way of saying this is that there’s some set of “principal 
axes” around which an object will “spin stably”, meaning it can spin around those axes without 
“wobbling” off-axis.  Finding those axes is straightforward, but I’m not going to talk about it 
here. 
 
The last thing I want to cover is how the inertia tensor is defined… so far we’ve treated it like a 
magic quantity that emerges from the sky.  Let’s look at the equations for on of the diagonal 
elements, which is representative of how we’d compute all of them : 

 

2 2( )xx V
I M y z dV= +∫ (1.5) 

 
Here M represents the mass of the object, and V is the volume of the object.  y and z are the 
positions of a particular point along the y and z axes, where zero is at the center of mass of the 
object (that’s important). 
 
So what does the Ixx equation mean?  We’re taking an integral over the whole volume, and we’re 
summing the squared distance of every point from the x axis (y2+z2).  So for a given amount of 
mass, I’m going to have a bigger Ixx value if most of my object is far away from the x axis.  
Remember, that means that to get a given acceleration around the x axis, I need to apply more 
torque around the x axis.  How can we understand that intuitively? 
 
The classic example for understanding this comes from figure skating… have you ever watched 
an ice skater get ready to spin super fast on the ice?  What does he/she do?  If he wants to spin 
fast, he puts his arms way above his head. 
 
What does this have to do with the inertia tensor?  Imagine the axis of the skater’s body is the x 
axis.  He’s going to spin himself around this axis with some torque (whatever he can generate 
with his legs).  What we’ve learned is that the lower his Ixx value is, the more rotational 
acceleration he’ll get for that torque.  And what we learned just now is that he can make his Ixx  
value smaller by putting his mass closer to the x axis… and he does that by putting his arms – 
which carry some of his weight – along the axis of his body.  Amazing. 



 
Another way to think of this… if the ice skater holds his hands way out (which makes Ixx 
bigger), and he wants to rotate his whole body at a certain rate, his hands are going to have to 
move much faster than his feet (because they cover more ground each time he spins around, just 
like the horses at the outside of a merry-go-round have to move faster than the inner ones).  So if 
he sticks his hands out, and he has to move some of his mass hella fast, it’s intuitive that he 
should have to apply more torque to get the same rotational velocity.  Voila, we have Ixx. 
 
And now, of course, we hit the off-diagonal elements.  The equation for Ixy looks like this : 
 

xy V
I M xydV= − ∫  (1.6) 

 
Unfortunately, we’re again stuck with the fact that this is really hard to explain, since (a) I don’t 
understand it that well and (b) it’s hard to reason about the counter-intuitive effect that applying 
torque along one axis can induce rotation around another axis.  But we can see how we compute 
this component, and we can get a couple interesting points out of it. 
 
Possibly the most important is that if the object is symmetric, every point on one side of each 
axis is going to “cancel out” the corresponding point on the other side of the axis.  Hence we get 
off-diagonal elements that are zero, just like we discussed above. 
 
Another thing we notice is that Ixy will be exactly the same as Iyx, since the inside of the above 
integral is just xy, which is the same as yx.  This tells us that all inertia tensors are symmetric, 
which makes them numerically friendly for many applications. 
 
 
Okay, I’m going to stop there… this was just my way of re-iterating my basic intuition for the 
inertia tensor.  I’m not about to solve hard problems in mechanics, but this intuition is typically 
more than enough to implement and reason about algorithms in physical simulation.  Another 
good resource is the popular SIGGRAPH mini-course on physical simulation : 
 
http://www-2.cs.cmu.edu/~baraff/sigcourse/ 
 
Good luck, and happy tensor-ing. 
 
-Dan 
 


